پیش بینی ماهانه جریان با استفاده از ماشین بردار پشتیبان بر مبنای آنالیز مؤلفه اصلی

Authors

روح اله نوری

امیر خاکپور

مجید دهقانی

اشکان فرخ نیا

abstract

هدف اصلی این تحقیق بررسی تأثیر انتخاب متغیرهای ورودی با استفاده از آنالیز مؤلفه اصلی (pca) بر عملکرد مدل ماشین بردار پشتیبان (svm) برای پیش بینی ماهانه دبی رودخانه بود. به این منظور ابتدا با استفاده از 18 متغیر ورودی به مدل svm، دبی جریان ماهانه پیش بینی شد. سپس با استفاده از pca تعداد متغیرهای ورودی به مدل svm از 18 متغیر به 5 مؤلفه کاهش یافت. در نهایت با استفاده از آماره توسعه یافته توسط نویسندگان مقاله، عملکرد مدل های ارائه شده (svm و pca-svm) مورد ارزیابی قرار گرفت. یافته های این تحقیق نشان داد که پیش پردازش متغیرهای ورودی به مدل svm با استفاده از pca، بهبود عملکرد مدل svm را به همراه داشته است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی ماهانه جریان با استفاده از ماشین بردار پشتیبان بر مبنای آنالیز مؤلفه اصلی

هدف اصلی این تحقیق بررسی تأثیر انتخاب متغیرهای ورودی با استفاده از آنالیز مؤلفه اصلی (PCA) بر عملکرد مدل ماشین بردار پشتیبان (SVM) برای پیش‌بینی ماهانه دبی رودخانه بود. به این منظور ابتدا با استفاده از 18 متغیر ورودی به مدل SVM، دبی جریان ماهانه پیش‌بینی شد. سپس با استفاده از PCA تعداد متغیرهای ورودی به مدل SVM از 18 متغیر به 5 مؤلفه کاهش یافت. در نهایت با استفاده از آماره توسعه یافته توسط نویس...

full text

پیش بینی تبخیر- تعرق پتانسیل ماهانه با استفاده از مدل‌های ماشین بردار پشتیبان، برنامه‌ریزی ژنتیک و سیستم استنتاج عصبی – فازی

  چکیده علی­رغم اهمیت تبخیر-تعرق در برنامه­ریزی و مدیریت منابع آبی، وابستگی آن به مولفه­های اقلیمی از یک­سو و تاثیرپذیری این مولفه­ها از یکدیگر از سویی دیگر تخمین تبخیر-تعرق را دشوار ساخته است. به همین منظور، در این پژوهش، به بررسی امکان پیش­بینی این مولفه­ی مهم در استان سیستان و بلوچستان با استفاده از مدل‌های فراابتکاری از قبیل سیستم استنتاج عصبی – فازی، برن...

full text

پیش بینی قیمت روزانه نفت خام برنت با ترکیب روش های آنالیز مؤلفه های اصلی و رگرسیون بردار پشتیبان

پیش­بینی روند قیمت نفت خام و نوسانات آن همواره یکی از چالش­های پیش روی معامله­گران در بازارهای نفتی بوده است. این مقاله به پیش­بینی قیمت روزانه نفت خام برنت با یک مدل ترکیبی پیشنهادی می­پردازد. نمونه آماری قیمت روزانه نفت خام برنت دریای شمال از ژوئیه سال 2008 تا ژوئیه سال 2016 می­باشد که از میان کل قیمت­های روزانه نفت در تمام بازارهای نفتی انتخاب شده است. در این پژوهش، برای پیش­بینی مدلی از ترک...

full text

پیش بینی ژن‏ های بیماری با استفاده از دسته‏ بند تک‌کلاسی ماشین بردار پشتیبان

Abstract: In disease gene identification and classification, users are only interested in classifying one specific class, disease genes, without considering other classes (non-disease genes). This situation is referred to as one-class classification. Existing machine learning-based methods typically use known disease gene as positive training set and unknown genes as negative training set to bu...

full text

توانایی ماشین بردار پشتیبان در پیش بینی درماندگی مالی

درماندگی مالی پیش از ورشکستگی مالی رخ می‌دهد و پیش بینی موثر آن یک مسئله‌ی مهم و چالش برانگیز برای شرکت‌ها می‌باشد. تحقیق حاضر به پیش بینی درماندگی مالی در قالب مدل ماشین بردار پشتیبان و با استفاده از ترکیبات جریان نقد می‌پردازد. اهمیت ابزارهای داده کاوی، و توانایی این ابزارها در پیش بینی و طبقه بندی متغیرها، استفاده از آن‌ها را در مباحث مختلف مالی از جمله پیش بینی ورشکستگی، پیش بینی درماندگی م...

full text

تأثیر پیش پردازش متغیرهای ورودی به شبکه عصبی برای پیش بینی جریان ماهانه با آنالیز مؤلفه های اصلی و موجک

برآورد جریان حوضه آبریز با توجه به کاربرد گسترده آن در علوم مرتبط با صنعت آب، از دیرباز مورد توجه پژوهشگران بوده است. ارائه الگوهای نو و به کارگیری تکنیک های پیشرفته می تواند موجب ایجاد تحول در برآورد این سیستم دینامیک و غیرخطی شود. در این تحقیق برای پیش بینی جریان ماهانه، از شبکه عصبی پیشخور استفاده گردیده است. به علت تعداد زیاد متغیرهای مورد استفاده در این تحقیق برای پیش بینی جریان، شناخت متغ...

full text

My Resources

Save resource for easier access later


Journal title:
فصلنامه علمی- پژوهشی آب و فاضلاب

Publisher: مهندسین مشاور طرح و تحقیقات آب و فاضلاب

ISSN 1024-5936

volume 22

issue 1 2011

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023